当前位置: 首页 > 儿童学堂 > 少儿数学

小升初数学:应用题综合训练

时间:2023-10-28 16:57:16 晓怡
小升初数学:应用题综合训练

小升初数学:应用题综合训练

小升初数学:应用题综合训练1

1、甲、乙两人分别从A、B两地同时出发,相向而行,乙的速度是甲的2/3,两人相遇后继续前进,甲到达B地,乙到达A地立即返回,已知两人第二次相遇的地点距离第一次相遇的地点是3000米,求A、B两地的距离.

解:第一次相遇时,两人合行了一个全程,其中乙行了全程的2÷(2+3)=2/5

第二次相遇时,两人合行了3个全程,其中乙行了全程的2/5×3=6/5

两次相遇点之间的距离占全程的2-6/5-2/5=2/5

所以全程是3000÷2/5=7500米。

解乙的速度是甲的2/3即甲速:乙速=3:2所以第一次相遇时甲走了全程的3/5,乙走了全程的2/5

第二次相遇的地点距第一次相遇甲共走了2倍全程的3/5=6/5,乙走了2倍全程的2/5=4/56/5-4/5=2/5,即相差全程的2/5A、B两地的距离=3000/(2/5)=7500米

综合:3000/[2*3/(2+3)-2*2/(3+2)]=50(千米)

76.一条船往返于甲、乙两港之间,已知船在静水中的速度为9千米/小时,平时逆行与顺行所用时间的比为2:1.一天因下雨,水流速度为原来的2倍,这条船往返共用10小时,问甲、乙两港相距多少千米?

C顺水速度是逆水速度的2倍,那么逆水速度就是水流速度的2倍,静水速度就是水流速度的3倍,所以水流速度是9÷3=3千米/小时

下雨时,水流速度是3×2=6千米/小时,

逆行速度是9-6=3千米/小时

顺行速度是9+6=15千米/小时

所以往返时,逆行时间和顺行时间比是5:1

所以顺行时间是10÷(5+1)=5/3小时

所以甲乙两港相距5/3×15=25千米

解:无论水速多少,逆水与顺水速度和均为9*2=18

故:

水速FlowSpeed=18/3/2=3;

船速ShipSpeed=FlowSpeed+18/3=9;

whenrains,Flowspeed=6;

顺水s1=9+6=15;

逆水s2=9-6=3;

顺水单程时间10*(3/(15+3))=5/3;

so,相距5/3*15=25km

2.某学校入学考试,确定了录取分数线,报考的学生中,只有1/3被录取,录取者平均分比录取分数线高6分,没有被录取的同学其平均分比录取分数线低15分,所有考生的平均分是80分,问录取分数线是多少分?

解:假设每组三人,其中3×1/3=1人被录取。每组总得分80×3=240分。录取者比没有被录取者多6+15=21分。所以,没有被录取的分数是(240-21)÷3=73分所以,录取分数线是73+15=88分

解:因为没录取的学生数是录取的学生数的:

(1-1/3)/1/3=2倍,二者的平均分之间相差:15+6=21分的距离,所以,在均衡分数时,没录取的`学生平均分每提高一分,录取的学生的平均分就要降低2分,这样二者的分差就减少了3分,21/3=7,即要进行7次这样的均衡才能达到平均分80分,在这个均衡过程中,录取的学生的平均分降低了:2*7=14分,

所以,录取分数线是:80+14-6=88分,

3.一群学生搬砖,如果有12人每人各搬7块,其余的每人搬5块,那么最后余下148块;如果有30人每人各搬8块,其余的每人搬7块,那么最后余下20块.问学生共有多少人?砖有多少块?

解:如果每人搬7块,就会余下30×(8-7)+20=50块

所以搬5块的人有(148-50)÷(7-5)=49人

所以学生共有12+49=61人,砖有61×7+50=477块。

解:12人每人各搬7块,当他们搬8块的时候,多搬了12块

18人每人各搬5块,当他们搬动8块的时候,多搬了18*3=54块

所以30人多搬了54+12=66块其余人搬动了148-20-66=62块

而这些其它人每人多搬动了2块,所以其他人的人数为62/2=31

所以,一共有学生61人

砖块的数量:12*7+49*5+148=477

解:把30人分成12人和18人两部分,12人每人各搬7块,若他们搬8块,则多搬了12*1=12块,18人每人各搬5块,若他们搬8块,则多搬了18*3=54块,

所以30人多搬了54+12=66块其余人搬动了148-20-66=62块,而这些其它人每人多搬动了7-5=2块,所以其他人的人数为62÷2=31所以,一共有学生61人砖块的数量:12*7+49*5+148=477块

小升初数学:应用题综合训练2

小升初数学应用题复习综合训练(十六)

1.甲、乙两个书架,共有书3000册,甲的册数的2/5比乙的册数的1/4多420本,求两个书架各有书多少册?

解:如果给乙的1/4加上420册,即给乙加上420*4=1680册,乙的1/4就与甲的2/5同样多。这时,甲、乙的册数比为1/4:2/5=5:8。

所以,甲书架有书:(3000+1680)*5/(5+8)=1800册;乙书架有书:3000-1800=1200册。

2.姐弟两人打印一批稿件,姐姐单独打印需要的时间是弟弟所需时间的3/8,姐姐先打印了这批稿件的2/5后,接着由弟弟单独打印,用24小时打印完,问姐姐打印了多少小时?

解法一:

另外的1-2/5=3/5如果弟弟做,需要的时间就相当于姐姐的3/5÷3/8=8/5, 所以姐姐单独打印完需要24÷(2/5+8/5)=12小时,所以姐姐打了12×2/5=

4.8小时。

解法二:

姐姐单独打印需要的时间是弟弟所需时间的3/8,姐姐先打印了这批稿件的2/5需要的时间相当于弟弟完成同样任务所需总时间的2/5×3/8=3/20,

接着由弟弟单独打印,需时为总时间的3/5,两比为1/4,共计用24小时。

弟弟打剩下的3/5用时24×4/(1+4)=96/5小时,完成全部任务用96÷5÷3/5=32小时。姐姐单独打完用时是32×3/8=12小时。所以姐姐用了12×2/5=4.8小时。

3.有甲、乙两个水管向水池注水,先开甲管,开放时间是单开乙管注满水池所需时间的1/3.然后开放乙管,开放的时间是单开甲管注满水池所需时间的1/3.这样注满水池的13/18.如果甲、乙两管同时开放,注满水池需3+3/5小时,那么单开甲管或单开乙管注满水池,各需要 ……此处隐藏17013个字……8-3=25人。

137.有三块草地,面积分别是4亩、8亩、10亩.草地上的草一样厚,而且长得一样快,第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周.问第三块草地可供50头牛吃几周?

解法一:设每头牛每周吃1份草。

第一块草地4亩可供24头牛吃6周,

说明每亩可供24÷4=6头牛吃6周。

第二块草地8亩可共36头牛吃12周,

说明每亩草地可供36÷8=9/2头牛吃12周。

所以,每亩草地每周要长(9/2×12-6×6)÷(12-6)=3份

所以,每亩原有草6×6-6×3=18份。

因此,第三块草地原有草18×10=180份,每周长3×10=30份。

所以,第三块草地可供50头牛吃180÷(50-30)=9周

解法二:设每头牛每周吃1份草。我们把题目进行变形。

有一块1亩的草地,可供24÷4=6头牛吃6周,供36÷8=9/2头牛吃12周,那么可供50÷10=5头牛吃多少周呢?

所以,每周草会长(9/2×12-6×6)÷(12-6)=3份,

原有草(6-3)×6=18份,

那么就够5头牛吃18÷(5-3)=9周

138.B地在A,C两地之间.甲从B地到A地去,出发后1小时,乙从B地出发到C地,乙出发后1小时,丙突然想起要通知甲、乙一件重要的事情,于是从B地出发骑车去追赶甲和乙.已知甲和乙的速度相等,丙的速度是甲、乙速度的3倍,为使丙从B地出发到最终赶回B地所用的时间最少,丙应当先追甲再返回追乙,还是先追乙再返回追甲?

我的思考如下:

如果先追乙返回,时间是1÷(3-1)×2=1小时,

再追甲后返回,时间是3÷(3-1)×2=3小时,

共用去3+1=4小时

如果先追甲返回,时间是2÷(3-1)×2=2小时,

再追乙后返回,时间是3÷(3-1)×2=3小时,

共用去2+3=5小时

所以先追乙时间最少。故先追更后出发的。

小升初数学:应用题综合训练13

1. 某商品每件成本72元,原来按定价出售,每天可售出100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提高到原来的.2.5倍,照这样计算,每天的利润比原来增加几元?

原来每天的利润是72×25%×100=1800元后来每件的利润是是72÷(1+25%)×(1-90%)=9元后来每天获得利润100×2.5×9=2250元所以,增加了2250-1800=450元

2. 甲、乙两列火车的速度比是5:4.乙车先发,从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车往B站,两列火车相遇的地方离A,B两站距离的比是3:4,那么A,B两站之间的距离为多少千米?

利用份数来解答:甲车行3份,乙车就行了3×4/5=2.4份,72千米相当于4-2.4=1.6份,每份是72÷1.6=45千米所以A和B两站之间的距离是45×(3+4)=315千米

利用分数来解答:甲车行全程的3/7,乙车就要行全程的3/7×4/5=12/3572千米对应的分率是4/7-12/35=8/35所以全程是72÷8/35=315千米

小升初数学:应用题综合训练14

1.六年级五个班的同学共植树100棵.已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班.又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵?

一班=二班+三班,二班=四班+五班;

可知,五个班的总和=一班+二班+三班+二班=二班×3+三班×2=100

所以二班×5>100>三班×5

所以二班人数超过20,三班人数少于20人

如果二班植树21棵,那么三班植树(100-21×3)÷2=17.5,棵数不能为小数。

如果二班植树22棵,那么三班植树(100-22×3)÷2=17棵

所以三班最多植树17棵。

2.甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米.乙总共跑了多少千米?

乙多跑的20分钟,跑了20/60×11=11/3千米,

结果甲共追上了11/3-2=5/3千米,

需要5/3÷(13-11)=5/6小时,

乙共行了11×(5/6+20/60)=77/6千米

3.有高度相等的A,B两个圆柱形容器,内口半径分别为6厘米和8厘米.容器A中装满水,容器B是空的,把容器A中的水全部倒入容器B中,测得容器B中的水深比容器高的7/8还低2厘米.容器的`高度是多少厘米?

这个题目要注意是“底面积”而不是“底面半径”,与高的关系!

容器A中的水全部倒入容器B,

容器B的水深就应该占容器高的(6×6)÷(8×8)=9/16

所以容器高2÷(7/8-9/16)=6.4厘米

4.有104吨的货物,用载重为9吨的汽车运送.已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成.

用进一法解决问题,次数要整数才行。

需要跑的次数是104÷9=11次……5吨,所以要跑11+1=12次

实际跑的次数是104÷(9+1)=10次……4吨,故10+1=11次

往返一次1小时,所以提前(12-11)×1=1小时。

5.师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件?

这个题目有点像鸡兔同笼问题:

如果两人工作效率都提高24%,那么两人共加工零件225×(24%+1)=279个

说明徒弟提高45%-24%=21%的工作效率就可以加工300-279=21个

所以徒弟第一天加工21÷21%=100个,那么徒弟第二天加工了100×(1+45%)=145个

那么师傅加工了300-145=155个零件。

6.奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米.去时用了4天,回来时用了3天,问学校距离百花山多少千米?

利用等差数列来解答:

行程每天增加2千米我是这样理解的,第一天按照原来的速度行使,从第二天开始,都比前一天多行2千米。所以形成了一个等差数列。

由于前面四天和后面三天行的路程相等。

去时,四天相当于原速行四天还要多2+4+6=12千米

返回时,三天相当于原速行三天还要多8+10+12=30千米

所以原速每天行30-12=18千米,可以求出学校距离百花山18×3+30=84千米

《小升初数学:应用题综合训练.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式